Note
This documentation is for the new OMERO 5.2 version. See the latest OMERO 5.1.x version or the previous versions page to find documentation for the OMERO version you are using if you have not upgraded yet.
Note
For developers, there are many examples listed below, all of which are stored under: examples and buildable/runnable via scons:
cd omero-src
./build.py build-all
cd omero-src/examples
python ../target/scons/scons.py
Other examples (in Python) can be found here.
A Blitz client is any application which uses the OMERO Application Programming Interface to talk to the OMERO.blitz server in any of the supported languages, like Python, C++, Java, or Matlab. A general understanding of the OMERO.server overview may make what is happening behind the scenes more transparent, but is not necessary. The points below outline all that an application writer is expected to know with links to further information where necessary.
The first hurdle when beginning to work with OMERO is to realize that building distributed-object systems is different from both building standalone clients and writing web applications in frameworks like mod_perl, django, or Ruby on Rails. The remoting framework used by OMERO is Ice from ZeroC. Ice is comparable to CORBA in many ways, but is typically easier to use.
A good first step is to be aware of the difference between remote and local invocations. Any invocation on a proxy (<class_name>Prx, described below) will result in a call over the network with all the costs that entails. The often-cited fallacies of distributed computing all apply, and the developer must be aware of concurrency and latency issues, as well as complete loss of connectivity, all of which we will discuss below.
Before we can begin talking about what you can do with OMERO (the remote method calls available in the OMERO Application Programming Interface), it is helpful to first know what the objects are that we will be distributing. These are the only types that can pass through the API.
Ice provides an interface definition language (IDL) for defining class hierarchies for passing data in a binary format. Similar to WSDL in web services or CORBA’s IDL, slice provides a way to specify how types can pass between different programming languages. For just that reason, several constructs not available in all the supported languages are omitted:
Slice defines the usual primitives – long, string, bool, as well as int, double, and float – which map into each language as would be expected. Aliases like “Ice::Long” are available for C++ to handle both 32 and 64 bit architectures.
A simple struct can then be built out of any combination of these types. From components/blitz/resources/omero/System.ice:
// The EventContext is all the information the server knows about a
// given method call, including user, read/write status, etc.
class EventContext
{
…
long userId;
string userName;
…
bool isAdmin;
…
Other than the “user-defined classes” which we will get to below, slice provides only four built-in building blocks for creating a type hierarchy.
#include <iostream>
#include <omero/Constants.h>
using namespace omero::constants;
int main() {
std::cout << "By default, no method call can pass more than ";
std::cout << MESSAGESIZEMAX << "kb" << std::endl;
std::cout << "By default, client.createSession() will wait ";
std::cout << (CONNECTTIMEOUT / 1000) << " seconds for a connection" << std::endl;
}
Example: examples/OmeroClients/constants.cpp
sz=omero.constants.MESSAGESIZEMAX.value;
to=omero.constants.CONNECTTIMEOUT.value/1000;
disp(sprintf('By default, no method call can pass more than %d kb',sz));
disp(sprintf('By default, client.createSession() will wait %d seconds for a connection', to));
Example: examples/OmeroClients/constants.m
from omero.constants import *
print "By default, no method call can pass more than %s kb" % MESSAGESIZEMAX
print "By default, client.createSession() will wait %s seconds for a connection" % (CONNECTTIMEOUT/1000)
Example: examples/OmeroClients/constants.py
import static omero.rtypes.*;
public class constants {
public static void main(String[] args) {
System.out.println(String.format(
"By default, no method call can pass more than %s kb",
omero.constants.MESSAGESIZEMAX.value));
System.out.println(String.format(
"By default, client.createSession() will wait %s seconds for a connection",
omero.constants.CONNECTTIMEOUT.value/1000));
}
}
Example: examples/OmeroClients/constants.java
#include <iostream>
#include <omero/Constants.h>
using namespace omero::constants::projection;
int main() {
std::cout << "IProjection takes arguments of the form: ";
std::cout << MAXIMUMINTENSITY;
std::cout << std::endl;
}
Example: examples/OmeroClients/enumerations.cpp
v=omero.constants.projection.ProjectionType.MAXIMUMINTENSITY.value();
disp(sprintf('IProjection takes arguments of the form: %s', v));
Example: examples/OmeroClients/enumerations.m
import omero
import omero_Constants_ice
print "IProjection takes arguments of the form: %s" % omero.constants.projection.ProjectionType.MAXIMUMINTENSITY
Example: examples/OmeroClients/enumerations.py
public class enumerations {
public static void main(String[] args) {
System.out.println(String.format(
"IProjection takes arguments of the form: %s",
omero.constants.projection.ProjectionType.MAXIMUMINTENSITY));
}
}
In Java, the Ice primitives map to non-nullable primitives. And in fact, for the still nullable types java.lang.String as well as all collections and arrays, Ice goes so far as to send an empty string (“”) or collection([]) rather than null.
However, the database and OMERO support nullable values and so OMERO.blitz defines a hierarchy of types which wraps the primitives: RTypes Since Ice allows references to be nulled, as opposed to primitives, it is possible to send null strings, integers, etc.
#include <omero/RTypesI.h>
using namespace omero::rtypes;
int main() {
omero::RStringPtr s = rstring("value");
omero::RBoolPtr b = rbool(true);
omero::RLongPtr l = rlong(1);
omero::RIntPtr i = rint(1);
}
Example: examples/OmeroClients/primitives.cpp
import omero.rtypes;
a = rtypes.rstring('value');
b = rtypes.rbool(true);
l = rtypes.rlong(1);
i = rtypes.rint(1);
Example: examples/OmeroClients/primitives.m
from omero.rtypes import *
s = rstring("value")
b = rbool(True)
l = rlong(1)
i = rint(1)
Example: examples/OmeroClients/primitives.py
import static omero.rtypes.*;
public class primitives {
public static void main(String[] args) {
omero.RString a = rstring("value");
omero.RBool b = rbool(true);
omero.RLong l = rlong(1l);
omero.RInt i = rint(1);
}
}
Example: examples/OmeroClients/primitives.java
The same works for collections. The RCollection subclass of RType holds a sequence of any other RType.
#include <omero/RTypesI.h>
using namespace omero::rtypes;
int main() {
// Sets and Lists may be interpreted differently on the server
omero::RListPtr l = rlist(); // rstring("a"), rstring("b"));
omero::RSetPtr s = rset(); // rint(1), rint(2));
// No-varargs (#1242)
}
Example: examples/OmeroClients/rcollection.cpp
% Sets and Lists may be interpreted differently on the server
ja = javaArray('omero.RString',2);
ja(1) = omero.rtypes.rstring('a');
ja(2) = omero.rtypes.rstring('b');
list = omero.rtypes.rlist(ja)
ja = javaArray('omero.RInt',2);
ja(1) = omero.rtypes.rint(1);
ja(2) = omero.rtypes.rint(2);
set = omero.rtypes.rset(ja)
Example: examples/OmeroClients/rcollection.m
import omero
from omero.rtypes import *
# Sets and Lists may be interpreted differently on the server
list = rlist(rstring("a"), rstring("b"));
set = rset(rint(1), rint(2));
Example: examples/OmeroClients/rcollection.py
import static omero.rtypes.*;
public class rcollection {
public static void main(String[] args) {
// Sets and Lists may be interpreted differently on the server
omero.RList list = rlist(rstring("a"), rstring("b"));
omero.RSet set = rset(rint(1), rint(2));
}
}
Example: examples/OmeroClients/rcollection.java
A further benefit of the RTypes is that they support polymorphism. The original OMERO Application Programming Interface was designed strictly for Java, in which the java.lang.Object type or collections of java.lang.Object could be passed. This is not possible with Ice, since there is no Any type as there is in CORBA.
Instead, omero.RType is the abstract superclass of our “remote type” hierarchy, and any method which takes an “RType” can take any subclass of “RType”.
To allow other types discussed later to also take part in the polymorphism, it is necessary to include RType wrappers for them. This is the category that omero::RObject and omero::RMap fall into.
omero::RTime and omero::RClass fall into a different category. They are identical to omero::RLong and omero::RString, respectively, but are provided as type safe variants.
With these components – rtypes, primitives, constants, etc. – it is possible to define the core nouns of OME, the OME-Remote Objects. The OMERO OME-Remote Objects is a translation of the OME XML specification into objects for use by the server, built out of RTypes, sequences and dictionaries, and Details.
The omero.model.Details object contains security and other internal information which does not contain any domain value. Attempting to set any values which are not permitted, will result in a SecurityViolation, for example trying to change the details.owner to the current user.
#include <omero/model/ImageI.h>
#include <omero/model/PermissionsI.h>
using namespace omero::model;
int main() {
ImagePtr image = new ImageI();
DetailsPtr details = image->getDetails();
PermissionsPtr p = new PermissionsI();
p->setUserRead(true);
assert(p->isUserRead());
details->setPermissions(p);
// Available when returned from server
// Possibly modifiable
details->getOwner();
details->setGroup(new ExperimenterGroupI(1L, false));
// Available when returned from server
// Not modifiable
details->getCreationEvent();
details->getUpdateEvent();
}
Example: examples/OmeroClients/details.cpp
image = omero.model.ImageI();
details_ = image.getDetails();
p = omero.model.PermissionsI();
p.setUserRead(true);
assert( p.isUserRead() );
details_.setPermissions( p );
% Available when returned from server
% Possibly modifiable
details_.getOwner();
details_.setGroup( omero.model.ExperimenterGroupI(1, false) );
% Available when returned from server
% Not modifiable
details_.getCreationEvent();
details_.getUpdateEvent();
Example: examples/OmeroClients/details.m
import omero
import omero.clients
image = omero.model.ImageI()
details = image.getDetails()
p = omero.model.PermissionsI()
p.setUserRead(True)
assert p.isUserRead()
details.setPermissions(p)
# Available when returned from server
# Possibly modifiable
details.getOwner()
details.setGroup(omero.model.ExperimenterGroupI(1L, False))
# Available when returned from server
# Not modifiable
details.getCreationEvent()
details.getUpdateEvent()
Example: examples/OmeroClients/details.py
import omero.model.Image;
import omero.model.ImageI;
import omero.model.Details;
import omero.model.Permissions;
import omero.model.PermissionsI;
import omero.model.ExperimenterGroupI;
public class details {
public static void main(String args[]) {
Image image = new ImageI();
Details details = image.getDetails();
Permissions p = new PermissionsI();
p.setUserRead(true);
assert p.isUserRead();
details.setPermissions(p);
// Available when returned from server
// Possibly modifiable
details.getOwner();
details.setGroup(new ExperimenterGroupI(1L, false));
// Available when returned from server
// Not modifiable
details.getCreationEvent();
details.getUpdateEvent();
}
}
Example: examples/OmeroClients/details.java
In the previous examples, you may have noticed how there are two classes for each type: Image and ImageI. Classes defined in slice are by default data objects, more like C++’s structs than anything else. As soon as a class defines a method, however, it becomes an abstract entity and requires application writers to provide a concrete implementation (hence the “I”). All OMERO classes define methods, but OMERO takes care of providing the implementations for you via code generation. For each slice-defined and Ice-generated class omero.model.Something, there is an OMERO-generated class omero.model.SomethingI which can be instantiated.
#include <omero/model/ImageI.h>
#include <omero/model/DatasetI.h>
using namespace omero::model;
int main() {
ImagePtr image = new ImageI();
DatasetPtr dataset = new DatasetI(1L, false);
image->linkDataset(dataset);
}
Example: examples/OmeroClients/constructors.cpp
import omero.model.*;
image = ImageI();
dataset = DatasetI(1, false);
image.linkDataset(dataset)
Example: examples/OmeroClients/constructors.m
import omero
import omero.clients
image = omero.model.ImageI()
dataset = omero.model.DatasetI(long(1), False)
image.linkDataset(dataset)
Example: examples/OmeroClients/constructors.py
import java.util.Iterator;
import omero.model.Image;
import omero.model.ImageI;
import omero.model.Dataset;
import omero.model.DatasetI;
import omero.model.DatasetImageLink;
import omero.model.DatasetImageLinkI;
public class constructors {
public static void main(String args[]) {
Image image = new ImageI();
Dataset dataset = new DatasetI(1L, false);
image.linkDataset(dataset);
}
}
Example: examples/OmeroClients/constructors.java
When OME-Remote Objects instances are serialized over the wire and arrive in the client, the Ice runtime must determine which constructor to call. It consults with the ObjectFactory, also provided by OMERO, to create the new classes. If you would like to have your own classes or subclasses created on deserialization, see the Advanced topics section below.
Such concrete implementations provide features which are not available in the solely Ice-based versions. When you would like to use these features, it is necessary to down-cast to the OMERO-based type.
For example, objects in each language binding provide a “more natural” form of iteration for that language.
#include <omero/model/ImageI.h>
#include <omero/model/DatasetI.h>
#include <omero/model/DatasetImageLinkI.h>
using namespace omero::model;
int main() {
ImageIPtr image = new ImageI();
DatasetIPtr dataset = new DatasetI();
DatasetImageLinkPtr link = dataset->linkImage(image);
omero::model::ImageDatasetLinksSeq seq = image->copyDatasetLinks();
ImageDatasetLinksSeq::iterator beg = seq.begin();
while(beg != seq.end()) {
beg++;
}
}
Example: examples/OmeroClients/iterators.cpp
import omero.model.*;
image = ImageI();
dataset = DatasetI();
link = dataset.linkImage(image);
it = image.iterateDatasetLinks();
while it.hasNext()
it.next().getChild().getName()
end
Example: examples/OmeroClients/iterators.m
import omero
from omero_model_ImageI import ImageI
from omero_model_DatasetI import DatasetI
from omero_model_DatasetImageLinkI import DatasetImageLinkI
image = ImageI()
dataset = DatasetI()
link = dataset.linkImage(image)
for link in image.iterateDatasetLinks():
link.getChild().getName();
Example: examples/OmeroClients/iterators.py
import omero.model.ImageI;
import omero.model.Dataset;
import omero.model.DatasetI;
import omero.model.DatasetImageLink;
import omero.model.DatasetImageLinkI;
import java.util.*;
public class iterators {
public static void main(String args[]) {
ImageI image = new ImageI();
Dataset dataset = new DatasetI();
DatasetImageLink link = dataset.linkImage(image);
Iterator<DatasetImageLinkI> it = image.iterateDatasetLinks();
while (it.hasNext()) {
it.next().getChild().getName();
}
}
}
Example: examples/OmeroClients/iterators.java
]
Also, each concrete implementation provides static constants of various forms.
#include <omero/model/ImageI.h>
#include <iostream>
int main() {
std::cout << omero::model::ImageI::NAME << std::endl;
std::cout << omero::model::ImageI::DATASETLINKS << std::endl;
}
Example: examples/OmeroClients/staticfields.cpp
disp(omero.model.ImageI.NAME);
disp(omero.model.ImageI.DATASETLINKS);
Example: examples/OmeroClients/staticfields.m
import omero
from omero_model_ImageI import ImageI as ImageI
print ImageI.NAME
print ImageI.DATASETLINKS
Example: examples/OmeroClients/staticfields.py
import omero.model.ImageI;
public class staticfields {
public static void main(String[] args) {
System.out.println(ImageI.NAME);
System.out.println(ImageI.DATASETLINKS);
}
}
In the constructor example above, a constructor with two arguments was used to create the Dataset instance linked to the new Image. The Dataset instance so created is considered “unloaded”.
Objects and collections can be created unloaded as a pointer to an actual instance or they may be returned unloaded from the server when they are not actively accessed in a query. Because of the interconnectedness of the OME-Remote Objects, loading one object could conceivably require downloading a large part of the database if there were not some way to “snip-off” sections.
#include <omero/model/ImageI.h>
#include <omero/model/DatasetI.h>
#include <omero/ClientErrors.h>
using namespace omero::model;
int main() {
ImagePtr image = new ImageI(); // A loaded object by default
assert(image->isLoaded());
image->unload(); // can then be unloaded
assert(! image->isLoaded());
image = new ImageI( 1L, false ); // Creates an unloaded "proxy"
assert(! image->isLoaded());
image->getId(); // Ok
try {
image->getName(); // No data access is allowed other than id.
} catch (const omero::ClientError& ce) {
// Ok.
}
}
Example: examples/OmeroClients/unloaded.cpp
image = omero.model.ImageI(); % A loaded object by default
assert(image.isLoaded());
image.unload();
assert( ~ image.isLoaded() ); % can then be unloaded
image = omero.model.ImageI( 1, false );
assert( ~ image.isLoaded() ); % Creates an unloaded "proxy"
image.getId(); % Ok.
try
image.getName(); % No data access is allowed other than id
catch ME
% OK
end
Example: examples/OmeroClients/unloaded.m
import omero
import omero.clients
image = omero.model.ImageI() # A loaded object by default
assert image.isLoaded()
image.unload() # can then be unloaded
assert (not image.isLoaded())
image = omero.model.ImageI( 1L, False ) # Creates an unloaded "proxy"
assert (not image.isLoaded())
image.getId() # Ok
try:
image.getName() # No data access is allowed other than id.
except:
pass
Example: examples/OmeroClients/unloaded.py
import omero.model.ImageI;
public class unloaded {
public static void main(String args[]) {
ImageI image = new ImageI(); // A loaded object by default
assert image.isLoaded();
image.unload(); // can then be unloaded
assert ! image.isLoaded();
image = new ImageI( 1L, false ); // Creates an unloaded "proxy"
assert ! image.isLoaded();
image.getId(); // Ok.
try {
image.getName(); // No data access is allowed other than id.
} catch (Exception e) {
// Ok.
}
}
}
Example: examples/OmeroClients/unloaded.java
When saving objects that have unloaded instances in their graph, the server will automatically fill in the values. So, if your Dataset contains a collection of Images, all of which are unloaded, then they will be reloaded before saving, based on the id. If, however, you had tried to set a value on one of the Images, you will get an exception.
To prevent errors when working with unloaded objects, all the OME-Remote Objects classes are marked as protected in the slice definitions which causes the implementations in each language to try to hide the fields. In Java and C++ this results in fields with “protected” visibility. In Python, an underscore is prefixed to all the variables. (In the Python case, we have also tried to “strengthen” the hiding of the fields, by overriding __setattr__. This is not full proof, but only so much can be done to hide values in Python.)
Just as an entire object can be unloaded, any collection field can also be unloaded. However, as mentioned above, since it is not possible to send a null collection over the wire with Ice and working with RTypes can be inefficient, all the OME-Remote Objects collections are hidden behind several methods.
#include <omero/model/DatasetI.h>
#include <omero/model/DatasetImageLinkI.h>
#include <omero/model/EventI.h>
#include <omero/model/ImageI.h>
#include <omero/model/PixelsI.h>
using namespace omero::model;
int main(int argc, char* argv[]) {
ImagePtr image = new ImageI(1, true);
image->getDetails()->setUpdateEvent( new EventI(1L, false) );
// On creation, all collections are
// initialized to empty, and can be added
// to.
assert(image->sizeOfDatasetLinks() == 0);
DatasetPtr dataset = new DatasetI(1L, false);
DatasetImageLinkPtr link = image->linkDataset(dataset);
assert(image->sizeOfDatasetLinks() == 1);
// If you want to work with this collection,
// you'll need to get a copy.
ImageDatasetLinksSeq links = image->copyDatasetLinks();
// When you are done working with it, you can
// unload the datasets, assuming the changes
// have been persisted to the server.
image->unloadDatasetLinks();
assert(image->sizeOfDatasetLinks() < 0);
try {
image->linkDataset( new DatasetI() );
} catch (…) {
// Can't access an unloaded collection
}
// The reload...() method allows one instance
// to take over a collection from another, if it
// has been properly initialized on the server.
// sameImage will have its collection unloaded.
ImagePtr sameImage = new ImageI(1L, true);
sameImage->getDetails()->setUpdateEvent( new EventI(1L, false) );
sameImage->linkDataset( new DatasetI(1L, false) );
image->reloadDatasetLinks( sameImage );
assert(image->sizeOfDatasetLinks() == 1);
assert(sameImage->sizeOfDatasetLinks() < 0);
// If you would like to remove all the member
// elements from a collection, don't unload it
// but "clear" it.
image->clearDatasetLinks();
// Saving this to the database will remove
// all dataset links!
// Finally, all collections can be unloaded
// to use an instance as a single row in the database.
image->unloadCollections();
// Ordered collections have slightly different methods.
image = new ImageI(1L, true);
image->addPixels( new PixelsI() );
image->getPixels(0);
image->getPrimaryPixels(); // Same thing
image->removePixels( image->getPixels(0) );
}
Example: examples/OmeroClients/collectionmethods.cpp
import omero.model.*;
image = ImageI(1, true);
image.getDetails().setUpdateEvent( EventI(1, false) );
% On creation, all collections are
% initialized to empty, and can be added
% to.
assert(image.sizeOfDatasetLinks() == 0);
dataset = DatasetI(1, false);
link = image.linkDataset(dataset);
assert(image.sizeOfDatasetLinks() == 1);
% If you want to work with this collection,
% you'll need to get a copy.
links = image.copyDatasetLinks();
% When you are done working with it, you can
% unload the datasets, assuming the changes
% have been persisted to the server.
image.unloadDatasetLinks();
assert(image.sizeOfDatasetLinks() < 0);
try
image.linkDataset( DatasetI() );
catch ME
% Can't access an unloaded collection
end
% The reload...() method allows one instance
% to take over a collection from another, if it
% has been properly initialized on the server.
% sameImage will have its collection unloaded.
sameImage = ImageI(1, true);
sameImage.getDetails().setUpdateEvent( EventI(1, false) );
sameImage.linkDataset( DatasetI(1, false) );
image.reloadDatasetLinks( sameImage );
assert(image.sizeOfDatasetLinks() == 1);
assert(sameImage.sizeOfDatasetLinks() < 0);
% If you would like to remove all the member
% elements from a collection, don't unload it
% but "clear" it.
image.clearDatasetLinks();
% Saving this to the database will remove
% all dataset links!
% Finally, all collections can be unloaded
% to use an instance as a single row in the database.
image.unloadCollections();
% Ordered collections have slightly different methods.
image = ImageI(1, true);
image.addPixels( PixelsI() );
image.getPixels(0);
image.getPrimaryPixels(); % Same thing
image.removePixels( image.getPixels(0) );
Example: examples/OmeroClients/collectionmethods.m
import omero
import omero.clients
ImageI = omero.model.ImageI
DatasetI = omero.model.DatasetI
EventI = omero.model.EventI
PixelsI = omero.model.PixelsI
image = ImageI(long(1), True)
image.getDetails().setUpdateEvent( EventI(1L, False) )
# On creation, all collections are
# initialized to empty, and can be added
# to.
assert image.sizeOfDatasetLinks() == 0
dataset = DatasetI(long(1), False)
link = image.linkDataset(dataset)
assert image.sizeOfDatasetLinks() == 1
# If you want to work with this collection,
# you'll need to get a copy.
links = image.copyDatasetLinks()
# When you are done working with it, you can
# unload the datasets, assuming the changes
# have been persisted to the server.
image.unloadDatasetLinks()
assert image.sizeOfDatasetLinks() < 0
try:
image.linkDataset( DatasetI() )
except:
# Can't access an unloaded collection
pass
# The reload...() method allows one instance
# to take over a collection from another, if it
# has been properly initialized on the server.
# sameImage will have its collection unloaded.
sameImage = ImageI(1L, True)
sameImage.getDetails().setUpdateEvent( EventI(1L, False) )
sameImage.linkDataset( DatasetI(long(1), False) )
image.reloadDatasetLinks( sameImage )
assert image.sizeOfDatasetLinks() == 1
assert sameImage.sizeOfDatasetLinks() < 0
# If you would like to remove all the member
# elements from a collection, don't unload it
# but "clear" it.
image.clearDatasetLinks()
# Saving this to the database will remove
# all dataset links!
# Finally, all collections can be unloaded
# to use an instance as a single row in the database.
image.unloadCollections()
# Ordered collections have slightly different methods.
image = ImageI(long(1), True)
image.addPixels( PixelsI() )
image.getPixels(0)
image.getPrimaryPixels() # Same thing
image.removePixels( image.getPixels(0) )
Example: examples/OmeroClients/collectionmethods.py
import omero.model.Dataset;
import omero.model.DatasetI;
import omero.model.DatasetImageLink;
import omero.model.DatasetImageLinkI;
import omero.model.EventI;
import omero.model.Image;
import omero.model.ImageI;
import omero.model.Pixels;
import omero.model.PixelsI;
import java.util.*;
public class collectionmethods {
public static void main(String args[]) {
Image image = new ImageI(1, true);
image.getDetails().setUpdateEvent( new EventI(1L, false) );
// On creation, all collections are
// initialized to empty, and can be added
// to.
assert image.sizeOfDatasetLinks() == 0;
Dataset dataset = new DatasetI(1L, false);
DatasetImageLink link = image.linkDataset(dataset);
assert image.sizeOfDatasetLinks() == 1;
// If you want to work with this collection,
// you'll need to get a copy.
List<DatasetImageLink> links = image.copyDatasetLinks();
// When you are done working with it, you can
// unload the datasets, assuming the changes
// have been persisted to the server.
image.unloadDatasetLinks();
assert image.sizeOfDatasetLinks() < 0;
try {
image.linkDataset( new DatasetI() );
} catch (Exception e) {
// Can't access an unloaded collection
}
// The reload...() method allows one instance
// to take over a collection from another, if it
// has been properly initialized on the server.
// sameImage will have its collection unloaded.
Image sameImage = new ImageI(1L, true);
sameImage.getDetails().setUpdateEvent( new EventI(1L, false) );
sameImage.linkDataset( new DatasetI(1L, false) );
image.reloadDatasetLinks( sameImage );
assert image.sizeOfDatasetLinks() == 1;
assert sameImage.sizeOfDatasetLinks() < 0;
// If you would like to remove all the member
// elements from a collection, don't unload it
// but "clear" it.
image.clearDatasetLinks();
// Saving this to the database will remove
// all dataset links!
// Finally, all collections can be unloaded
// to use an instance as a single row in the database.
image.unloadCollections();
// Ordered collections have slightly different methods.
image = new ImageI(1L, true);
image.addPixels( new PixelsI() );
image.getPixels(0);
image.getPrimaryPixels(); // Same thing
image.removePixels( image.getPixels(0) );
}
}
Example: examples/OmeroClients/collectionmethods.java
These methods prevent clients from accessing the collections directly, and any improper access will lead to an omero.ClientError.
As mentioned above, one of the Java features which is missing from the slice definition language is the ability to have concrete classes implement multiple interfaces. Much of the OME-Remote Objects in the RMI-based types (ome.model) was based on the use of interfaces.
Instead, the Ice-based types (omero.model) all subclass from the same concrete type – omero.model.IObject – and it has several methods defined for testing which of the ome.model interfaces are implemented by any type.
Use of such methods is naturally less object-oriented and requires if/then blocks, but within the confines of the mapping language is a next-best option.
# No cpp example
import omero.model.*;
o = EventI();
assert( ~ o.isMutable() );
o = ExperimenterI();
assert( o.isMutable() );
assert( o.isGlobal() );
assert( o.isAnnotated() );
o = GroupExperimenterMapI();
assert( o.isLink() );
someObject = ExperimenterI();
% Some method call and you no longer know what someObject is
if (~ someObject.isMutable() )
% No need to update
elseif (someObject.isAnnotated())
% deleteAnnotations(someObject);
end
Example: examples/OmeroClients/interfaces.m
import omero
from omero_model_EventI import EventI
from omero_model_ExperimenterI import ExperimenterI
from omero_model_GroupExperimenterMapI import GroupExperimenterMapI
assert ( not EventI().isMutable() )
assert ExperimenterI().isMutable()
assert ExperimenterI().isGlobal()
assert ExperimenterI().isAnnotated()
assert GroupExperimenterMapI().isLink()
Example: examples/OmeroClients/interfaces.py
import omero.model.IObject;
import omero.model.EventI;
import omero.model.ExperimenterI;
import omero.model.GroupExperimenterMapI;
public class interfaces {
public static void main(String args[]) {
assert ! new EventI().isMutable();
assert new ExperimenterI().isMutable();
assert new ExperimenterI().isGlobal();
assert new ExperimenterI().isAnnotated();
assert new GroupExperimenterMapI().isLink();
IObject someObject = new ExperimenterI();
// Some method call and you no longer know what someObject is
if ( ! someObject.isMutable()) {
// No need to update
} else if (someObject.isAnnotated()) {
// deleteAnnotations(someObject);
}
}
}
Example: examples/OmeroClients/interfaces.java
Improvement of this situation by adding abstract classes is planned. However, the entire functionality will not be achievable because of single inheritance.
An important consideration when working with C++ is that the OME-Remote Objects classes themselves have no copy-constructors and no assignment operator (operator=), and so cannot be allocated on the stack. Combined with smart pointers this effectively prevents memory leaks.
The code generated types must be allocated on the heap with new and used in combination with the smart pointer typedefs which handle calling the destructor when the reference count hits zero.
#include <omero/model/ImageI.h>
using namespace omero::model;
int main()
{
// ImageI image(); // ERROR
// ImageI image = new ImageI(); // ERROR
ImageIPtr image1 = new ImageI(); // OK
ImageIPtr image2(new ImageI()); // OK
// image1 pointer takes value of image2
// image1's content is garbage collected
image1 = image2;
//
// Careful with boolean contexts
//
if (image1 && image1 == 1) {
// Means non-null
// This object can be dereferenced
}
ImageIPtr nullImage; // No assignment
if ( !nullImage && nullImage == 0) {
// Dereferencing nullImage here would throw an exception:
// nullImage->getId(); // IceUtil::NullHandleException !
}
}
Example: examples/OmeroClients/smartpointers.cpp
# No m example
# No py example
# No java example
Warning
As shown in the example, using a smart pointer instance in a boolean or integer/long context, returns 1 for true (i.e. non-null) or 0 for false (i.e. null). Be especially careful with the RTypes.
For more information, see 6.14.6 Smart Pointers for Classes in the Ice manual, which also describes the Ice.GC.Interval parameter which determines how often garbage collection runs in C++ to reap objects. This is necessary with the OME-Remote Objects since there are inherently cycles in the object graph.
Another point type which may be of use is omero::client_ptr. It also performs reference counting and will call client.closeSession() once the reference count hits zero. Without client_ptr, your code will need to be surrounded by a try/catch block. Otherwise, 1) sessions will be left open on the server, and 2) your client may hang on exit.
#include <omero/client.h>
int main(int argc, char* argv[])
{
// Duplicating the argument list. ticket:1246
Ice::StringSeq args1 = Ice::argsToStringSeq(argc, argv);
Ice::StringSeq args2(args1);
Ice::InitializationData id1, id2;
id1.properties = Ice::createProperties(args1);
id2.properties = Ice::createProperties(args2);
// Either
omero::client client(id1);
try {
// Do something like
// client.createSession();
} catch (…) {
client.closeSession();
}
//
// Or
//
{
omero::client_ptr client = new omero::client(id2);
// Do something like
// client->createSession();
}
// Client was destroyed via RAII
}
Example: examples/OmeroClients/clientpointer.cpp
# No m example
# No py example
# No java example
Like smart pointers for OMERO C++ language bindings, the OMERO Python language bindings SDK defines __getattr__ and __setattr__ methods for all OME-Remote Objects classes. Rather than explicitly calling the getFoo() and setFoo() methods, field-like access can be used. (It should be noted, however, that the accessors will perform marginally faster.)
# No cpp example
# No m example
import omero
import omero.clients
from omero.rtypes import *
i = omero.model.ImageI()
#
# Without __getattr__ and __setattr__
#
i.setName( rstring("name") )
assert i.getName().getValue() == "name"
#
# With __getattr__ and __setattr__
#
i = omero.model.ImageI()
i.name = rstring("name")
assert i.name.val == "name"
#
# Collections, however, cannot be accessed
# via the special methods due to the dangers
# outlined above
#
try:
i.datasetLinks[0]
except AttributeError, ae:
pass
Example: examples/OmeroClients/getsetattr.py
# No java example
Ice generates a number of internal (private) methods which are not intended for general consumption. Unfortunately, Matlab’s code-completion as well as Python’s dir method return these methods, which can lead to confusion. In general, the API user can ignore any method beginning with an underscore or with ice_. For example,
>>>for i in dir(omero.model.ImageI):
... if i.startswith("_") or i.startswith("ice_"):
... print i
...
(snip)
_op_addAllDatasetImageLinkSet
_op_addAllImageAnnotationLinkSet
_op_addAllPixelsSet
_op_addAllRoiSet
_op_addAllWellSampleSet
...
ice_id
ice_ids
ice_isA
ice_ping
ice_postUnmarshal
ice_preMarshal
ice_staticId
ice_type
>>>
After discussing the many types and how to create them, the next obvious question is what one can actually do with them. For that, we have to look at what services are provided by OMERO.blitz, how they are obtained, used, and cleaned up.
The first step in accessing the OMERO Application Programming Interface and therefore the first thing to plan when writing an OMERO client is the proper configuration of an omero.client instance. The omero.client (or in C++ omero::client) class tries to wrap together and simplify as much of working with Ice as possible. Where it can, it imports or <#includes> types for you, creates an Ice.Communicator and registers an ObjectFactory. Typically, the only work on the client developers part is to properly configure the omero.client object and then login.
In the simplest case, configuration requires only the server host, username, and password with which you want to login. But as you can see below, there are various ways to configure your client, and this is really only the beginning.
#include <omero/client.h>
#include <iostream>
int main(int argc, char* argv[]) {
// All configuration in file pointed to by
// --Ice.Config=file.config
// No username, password entered
try {
omero::client client1(argc, argv);
client1.createSession();
client1.closeSession();
} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?
} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?
}
// Most basic configuration.
// Uses default port 4064
// createSession needs username and password
try {
omero::client client2("localhost");
client2.createSession("root", "ome");
client2.closeSession();
} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?
} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?
}
// Configuration with port information
try {
omero::client client3("localhost", 24063);
client3.createSession("root", "ome");
client3.closeSession();
} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?
} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?
}
// Advanced configuration in C++ takes place
// via an InitializationData instance.
try {
Ice::InitializationData data;
data.properties = Ice::createProperties();
data.properties->setProperty("omero.host", "localhost");
omero::client client4(data);
client4.createSession("root", "ome");
client4.closeSession();
} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?
} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?
}
// std::map to be added (ticket:1278)
try {
Ice::InitializationData data;
data.properties = Ice::createProperties();
data.properties->setProperty("omero.host", "localhost");
data.properties->setProperty("omero.user", "root");
data.properties->setProperty("omero.pass", "ome");
omero::client client5(data);
// Again, no username or password needed
// since present in the data. But they *can*
// be overridden.
client5.createSession();
client5.closeSession();
} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?
} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?
}
}
Example: examples/OmeroClients/configuration.cpp
% All configuration in file pointed to by
% --Ice.Config=file.config
% No username, password entered
args = javaArray('java.lang.String',1);
args(1) = java.lang.String('--Ice.Config=ice.config');
client1 = omero.client(args);
client1.createSession();
client1.closeSession();
% Most basic configuration.
% Uses default port 4064
% createSession needs username and password
client2 = omero.client('localhost');
client2.createSession('root', 'ome');
client2.closeSession();
% Configuration with port information
client3 = omero.client('localhost', 10463);
client3.createSession('root', 'ome');
client3.closeSession();
% Advanced configuration can also be done
% via an InitializationData instance.
data = Ice.InitializationData();
data.properties = Ice.Util.createProperties();
data.properties.setProperty('omero.host', 'localhost');
client4 = omero.client(data);
client4.createSession('root', 'ome');
client4.closeSession();
% Or alternatively via a java.util.Map instance
map = java.util.HashMap();
map.put('omero.host', 'localhost');
map.put('omero.user', 'root');
map.put('omero.pass', 'ome');
client5 = omero.client(map);
% Again, no username or password needed
% since present in the map. But they *can*
% be overridden.
client5.createSession();
client5.closeSession();
Example: examples/OmeroClients/configuration.m
import omero
import Ice
# All configuration in file pointed to by
# --Ice.Config=file.config or ICE_CONFIG
# environment variable;
# No username, password entered
try:
client1 = omero.client()
client1.createSession()
client1.closeSession()
except Ice.ConnectionRefusedException:
pass # Bad address or port?
# Most basic configuration.
# Uses default port 4064
# createSession needs username and password
try:
client2 = omero.client("localhost")
client2.createSession("root","ome")
client2.closeSession()
except Ice.ConnectionRefusedException:
pass # Bad address or port?
# Configuration with port information
try:
client3 = omero.client("localhost", 24064)
client3.createSession("root","ome")
client3.closeSession()
except Ice.ConnectionRefusedException:
pass # Bad address or port?
# Advanced configuration can also be done
# via an InitializationData instance.
data = Ice.InitializationData()
data.properties = Ice.createProperties()
data.properties.setProperty("omero.host", "localhost")
try:
client4 = omero.client(data)
client4.createSession("root","ome")
client4.closeSession()
except Ice.ConnectionRefusedException:
pass # Bad address or port?
# Or alternatively via a dict instance
m = {"omero.host":"localhost",
"omero.user":"root",
"omero.pass":"ome"}
client5 = omero.client(m)
# Again, no username or password needed
# since present in the map. But they *can*
# be overridden.
try:
client5.createSession()
client5.closeSession()
except Ice.ConnectionRefusedException:
pass # Bad address or port?
Example: examples/OmeroClients/configuration.py
public class configuration {
public static void main(String[] args) throws Exception {
// All configuration in file pointed to by
// --Ice.Config=file.config
// No username, password entered
omero.client client1 = new omero.client(args);
try {
client1.createSession();
} catch (Ice.ConnectionRefusedException cre) {
// Bad address or port?
} finally {
client1.closeSession();
}
// Most basic configuration.
// Uses default port 4064
// createSession needs username and password
omero.client client2 = new omero.client("localhost");
try {
client2.createSession("root", "ome");
} catch (Ice.ConnectionRefusedException cre) {
// Bad address or port?
} finally {
client2.closeSession();
}
// Configuration with port information
omero.client client3 = new omero.client("localhost", 24064);
try {
client3.createSession("root", "ome");
} catch (Ice.ConnectionRefusedException cre) {
// Bad address or port?
} finally {
client3.closeSession();
}
// Advanced configuration can also be done
// via an InitializationData instance.
Ice.InitializationData data = new Ice.InitializationData();
data.properties = Ice.Util.createProperties();
data.properties.setProperty("omero.host", "localhost");
omero.client client4 = new omero.client(data);
try {
client4.createSession("root", "ome");
} catch (Ice.ConnectionRefusedException cre) {
// Bad address or port?
} finally {
client4.closeSession();
}
// Or alternatively via a java.util.Map instance
java.util.Map<String, String> map = new java.util.HashMap<String, String>();
map.put("omero.host", "localhost");
map.put("omero.user", "root");
map.put("omero.pass", "ome");
omero.client client5 = new omero.client(map);
// Again, no username or password needed
// since present in the map. But they *can*
// be overridden.
try {
client5.createSession();
} catch (Ice.ConnectionRefusedException cre) {
// Bad address or port?
} finally {
client5.closeSession();
}
}
}
Example: examples/OmeroClients/configuration.java
To find out more about using the Ice.Config file for configuration, see etc/templates/ice.config.
In each of the examples above, the result of configuration was the ability to call createSession which returns a ServiceFactoryPrx.
The ServiceFactory is the clients representation of the user’s server-side session, which multiple clients can connect to it simultaneously. A ServiceFactoryPrx? object is acquired on login via the createSession method, and persists until either it is closed or a timeout is encountered unless additional clients attach to it. This is done via client.joinSession(String uuid). In that case, the session is not finally closed until its reference count drops to zero.
Once a client has been configured properly, and has an active in ServiceFactory in hand, it is time to start accessing services.
The collection of all services provided by OMERO is known as the OMERO Application Programming Interface. Each service is defined in a slice file under components/blitz/resources/omero. The central definitions are in components/blitz/resources/omero/API.ice, along with the definition of ServiceFactory itself:
interface ServiceFactory extends Glacier2::Session
{
// Central OMERO.blitz stateless services.
IAdmin* getAdminService() throws ServerError;
IConfig* getConfigService() throws ServerError;
…
// Central OMERO.blitz stateful services.
Gateway* createGateway() throws ServerError;
…
In the definition above, the return values look like C/C++ pointers, which in Ice’s definition language represents return-by-proxy. When a client calls, serviceFactory.getAdminService() it will receive an IAdminPrx. Any call on that object is a remote invocation.
Most methods on the ServiceFactory return either a stateless or a stateful service factory. Stateless services are those returned by calls to “getSomeNameService()”. They implement omero.api.ServiceInterface but not its subinterface omero.api.StatefulServiceInterface. Stateless services are for all intents and purposes singletons, though the implementation may vary.
Stateful services are returned by calls to “createSomething()” and implement omero.api.StatefulServiceInterface. Each maintains a state machine with varying rules on initialization and usage. It is important to guarantee that calls are ordered as described in the documentation for each stateful service. It is also important to always close stateful services to free up server resources. If you fail to manually call StatefulServiceInterfacePrx.close(), it will be called for you on session close/timeout.
The following code has a resource leak:
import omero, sys
c = omero.client()
s = c.createSession()
sys.exit(0)
Although the client will not suffer any consequences, this snippet leaves a session open on the server. If the server failed to eventually reap such sessions, they would eventually consume all available memory. To get around this, the server implements timeouts on all sessions. It is the clients responsibility to periodically contact the server to keep the session alive. Since threading policies vary in applications, no strict guideline is available on how to do this. Almost any API method will suffice to tell the server that the client is still active. Important is that the call happens within every timeout window.
# No cpp example
# No m example
import time
import omero
import threading
IDLETIME = 5
c = omero.client()
s = c.createSession()
re = s.createRenderingEngine()
class KeepAlive(threading.Thread):
def run(self):
self.stop = False
while not self.stop:
time.sleep(IDLETIME)
print "calling keep alive"
# Currently, passing a null or empty array to keepAllAlive
# would suffice. For future-proofing, however, it makes sense
# to pass stateful services.
try:
s.keepAllAlive([re])
except:
c.closeSession()
raise
keepAlive = KeepAlive()
keepAlive.start()
time.sleep(IDLETIME * 2)
keepAlive.stop = True
Example: examples/OmeroClients/timeout.py
import omero.*;
import omero.api.*;
import omero.model.*;
import omero.sys.*;
public class timeout {
static int IDLETIME = 5;
static client c;
static ServiceFactoryPrx s;
public static void main(String[] args) throws Exception {
final int idletime = args.length > 1 ? Integer.parseInt(args[0]) : IDLETIME;
c = new client(args);
s = c.createSession();
System.out.println(s.getAdminService().getEventContext().sessionUuid);
final RenderingEnginePrx re = s.createRenderingEngine(); // for keep alive
class Run extends Thread {
public boolean stop = false;
public void run() {
while ( ! stop ) {
try {
Thread.sleep(idletime*1000L);
} catch (Exception e) {
// ok
}
System.out.println(System.currentTimeMillis() + " calling keep alive");
try {
// Currently, passing a null or empty array to keepAllAlive
// would suffice. For future-proofing, however, it makes sense
// to pass stateful services.
s.keepAllAlive(new ServiceInterfacePrx[]{re});
} catch (Exception e) {
c.closeSession();
throw new RuntimeException(e);
}
}
}
}
final Run run = new Run();
class Stop extends Thread {
public void run() {
run.stop = true;
}
}
Runtime.getRuntime().addShutdownHook(new Stop());
run.start();
}
}
Example: examples/OmeroClients/timeout.java
Probably the most critical thing to realize is that any call on a proxy, which includes ServiceFactoryPrx or any of the *Prx service classes is a remote invocation on the server. Therefore proper exception handling is critical. The definition of the various exceptions is outlined on the Exception handling page and so will not be repeated here. However, how are these sensibly used?
One easy rule is that every omero.client object which you successfully call createSession() on must have closeSession() called on it before you exit.
omero.client client = new omero.client();
client.createSession();
try {
// do whatever you want
} finally {
client.closeSession();
}
Obviously, the work you do in your client will be much more complicated, and may be under layers of application code. But when designing where active omero.client objects are kept, be sure that your clean-up code takes care of them.
Now that we have a good idea of the basics, it might be interesting to start asking the server what it has got. The most powerful way of doing this is by using IQuery and the Hibernate Query Language (HQL).
#include <omero/api/IQuery.h>
#include <omero/client.h>
#include <omero/RTypesI.h>
#include <omero/sys/ParametersI.h>
using namespace omero::rtypes;
int main(int argc, char* argv[]) {
omero::client_ptr client = new omero::client(argc, argv);
omero::api::ServiceFactoryPrx sf = client->createSession();
omero::api::IQueryPrx q = sf->getQueryService();
std::string query_string = "select i from Image i where i.id = :id and name like :namedParameter";
omero::sys::ParametersIPtr p = new omero::sys::ParametersI();
p->add("id", rlong(1L));
p->add("namedParameter", rstring("cell%mit%"));
omero::api::IObjectList results = q->findAllByQuery(query_string, p);
}
Example: examples/OmeroClients/queries.cpp
[client,sf] = loadOmero;
try
q = sf.getQueryService();
query_string = 'select i from Image i where i.id = :id and name like :namedParameter';
p = omero.sys.ParametersI();
p.add('id', omero.rtypes.rlong(1));
p.add('namedParameter', omero.rtypes.rstring('cell%mit%'));
results = q.findAllByQuery(query_string, p) % java.util.List
catch ME
client.closeSession();
end
Example: examples/OmeroClients/queries.m
import sys
import omero
from omero.rtypes import *
from omero_sys_ParametersI import ParametersI
client = omero.client(sys.argv)
try:
sf = client.createSession()
q = sf.getQueryService()
query_string = "select i from Image i where i.id = :id and name like :namedParameter";
p = ParametersI()
p.addId(1L)
p.add("namedParameter", rstring("cell%mit%"));
results = q.findAllByQuery(query_string, p)
finally:
client.closeSession()
Example: examples/OmeroClients/queries.py
import java.util.List;
import static omero.rtypes.*;
import omero.api.ServiceFactoryPrx;
import omero.api.IQueryPrx;
import omero.model.IObject;
import omero.model.ImageI;
import omero.model.PixelsI;
import omero.sys.ParametersI;
public class queries {
public static void main(String args[]) throws Exception {
omero.client client = new omero.client(args);
try {
ServiceFactoryPrx sf = client.createSession();
IQueryPrx q = sf.getQueryService();
String query_string = "select i from Image i where i.id = :id and name like :namedParameter";
ParametersI p = new ParametersI();
p.add("id", rlong(1L));
p.add("namedParameter", rstring("cell%mit%"));
List<IObject> results = q.findAllByQuery(query_string, p);
} finally {
client.closeSession();
}
}
}
Example: examples/OmeroClients/queries.java
The query_string is an example of HQL. It looks a lot like SQL, but works with objects and fields rather than tables and columns (though in OMERO these are usually named the same). The Parameters object allow for setting named parameters (:id) in the query to allow for re-use, and is the only other argument need to IQueryPrx.findAllByQuery() to get a list of IObject instances back. They are guaranteed to be of type omero::model::Image, but you may have to cast them to make full use of that information.
After you have successfully read objects, an obvious thing to do is create your own. Below is a simple example of creating an image object:
#include <IceUtil/Time.h>
#include <omero/api/IUpdate.h>
#include <omero/client.h>
#include <omero/RTypesI.h>
#include <omero/model/ImageI.h>
using namespace omero::rtypes;
int main(int argc, char* argv[]) {
omero::client_ptr client = new omero::client(argc, argv);
omero::model::ImagePtr i = new omero::model::ImageI();
i->setName( rstring("name") );
i->setAcquisitionDate( rtime(IceUtil::Time::now().toMilliSeconds()) );
omero::api::ServiceFactoryPrx sf = client->createSession();
omero::api::IUpdatePrx u = sf->getUpdateService();
i = omero::model::ImagePtr::dynamicCast( u->saveAndReturnObject( i ) );
}
Example: examples/OmeroClients/updates.cpp
[client,sf] = loadOmero;
try
i = omero.model.ImageI();
i.setName(omero.rtypes.rstring('name'));
i.setAcquisitionDate(omero.rtypes.rtime(java.lang.System.currentTimeMillis()));
u = sf.getUpdateService();
i = u.saveAndReturnObject( i );
disp(i.getId().getValue());
catch ME
disp(ME);
client.closeSession();
end
Example: examples/OmeroClients/updates.m
import sys
import time
import omero
import omero.clients
from omero.rtypes import *
client = omero.client(sys.argv)
try:
i = omero.model.ImageI()
i.name = rstring("name")
i.acquisitionDate = rtime(time.time() * 1000)
sf = client.createSession()
u = sf.getUpdateService()
i = u.saveAndReturnObject( i )
finally:
client.closeSession()
Example: examples/OmeroClients/updates.py
import java.util.List;
import static omero.rtypes.*;
import omero.api.ServiceFactoryPrx;
import omero.api.IUpdatePrx;
import omero.model.ImageI;
import omero.model.Image;
public class updates {
public static void main(String args[]) throws Exception {
omero.client client = new omero.client(args);
try {
Image i = new ImageI();
i.setName( rstring("name") );
i.setAcquisitionDate( rtime(System.currentTimeMillis()) );
ServiceFactoryPrx sf = client.createSession();
IUpdatePrx u = sf.getUpdateService();
i = (Image) u.saveAndReturnObject( i );
} finally {
client.closeSession();
}
}
}
Example: examples/OmeroClients/updates.java
To tie together some of the topics which we have outlined above, we would like to eventually have several more or less complete application examples which you can use to get started. For the moment, there is just one simpler example TreeList, but more will certainly be added. Let us know any ideas you may have.
# No cpp example
function projects = AllProjects(query, username)
q = ['select p from Project p join fetch p.datasetLinks dil ',...
'join fetch dil.child where p.details.owner.omeName = :name'];
p = omero.sys.ParametersI();
p.add('name', omero.rtypes.rstring(username));
projects = query.findAllByQuery(q, p);
Example: examples/TreeList/AllProjects.m
import omero
from omero.rtypes import *
from omero_sys_ParametersI import ParametersI
def getProjects(query_prx, username):
return query_prx.findAllByQuery(
"select p from Project p join fetch p.datasetLinks dil join fetch dil.child where p.details.owner.omeName = :name",
ParametersI().add("name", rstring(username)))
Example: examples/TreeList/AllProjects.py
import java.util.List;
import omero.model.Project;
import omero.api.IQueryPrx;
import omero.sys.ParametersI;
import static omero.rtypes.*;
public class AllProjects {
public static List<Project> getProjects(IQueryPrx query, String username) throws Exception {
List rv = query.findAllByQuery(
"select p from Project p join fetch p.datasetLinks dil join fetch dil.child where p.details.owner.omeName = :name",
new ParametersI().add("name", rstring(username)));
return (List<Project>) rv;
}
}
Example: examples/TreeList/AllProjects.java
# No cpp example
function PrintProjects(projects)
if (projects.size()==0)
return;
end;
for i=0:projects.size()-1,
project = projects.get(i);
disp(project.getName().getValue());
links = project.copyDatasetLinks();
if (links.size()==0)
return
end
for j=0:links.size()-1,
pdl = links.get(j);
dataset = pdl.getChild();
disp(sprintf(' %s', char(dataset.getName().getValue())));
end
end
Example: examples/TreeList/PrintProjects.m
def print_(projects):
for project in projects:
print project.getName().val
for pdl in project.copyDatasetLinks():
dataset = pdl.getChild()
print " " + dataset.getName().val
Example: examples/TreeList/PrintProjects.py
import java.util.List;
import omero.model.Project;
import omero.model.ProjectDatasetLink;
import omero.model.Dataset;
public class PrintProjects {
public static void print(List<Project> projects) {
for (Project project : projects) {
System.out.print(project.getName().getValue());
for (ProjectDatasetLink pdl : project.copyDatasetLinks()) {
Dataset dataset = pdl.getChild();
System.out.println(" " + dataset.getName().getValue());
}
}
}
}
Example: examples/TreeList/PrintProjects.java
#include <omero/client.h>
#include <Usage.h>
#include <AllProjects.h>
#include <PrintProjects.h>
int main(int argc, char* argv[]) {
std::string host, port, user, pass;
try {
host = argv[0];
port = argv[1];
user = argv[2];
pass = argv[3];
} catch (…) {
Usage::usage();
}
omero::client client(argc, argv);
int rc = 0;
try {
omero::api::ServiceFactoryPrx factory = client.createSession(user, pass);
std::vector<omero::model::ProjectPtr> projects = AllProjects::getProjects(factory->getQueryService(), user);
PrintProjects::print(projects);
} catch (…) {
client.closeSession();
}
return rc;
}
Example: examples/TreeList/Main.cpp
function Main(varargin)
try
host = varargin{1};
port = varargin{2};
user = varargin{3};
pass = varargin{4};
catch ME
Usage
end
client = omero.client(host, port);
factory = client.createSession(user, pass);
projects = AllProjects(factory.getQueryService(), user);
PrintProjects(projects);
client.closeSession();
Example: examples/TreeList/Main.m
import sys
import omero
import Usage, AllProjects, PrintProjects
if __name__ == "__main__":
try:
host = sys.argv[1]
port = sys.argv[2]
user = sys.argv[3]
pasw = sys.argv[4]
except:
Usage.usage()
client = omero.client(sys.argv)
try:
factory = client.createSession(user, pasw)
projects = AllProjects.getProjects(factory.getQueryService(), user)
PrintProjects.print_(projects)
finally:
client.closeSession()
Example: examples/TreeList/Main.py
import omero.api.ServiceFactoryPrx;
import omero.model.Project;
import java.util.List;
public class Main {
public static void main(String args[]) throws Exception{
String host = null, port = null, user = null, pass = null;
try {
host = args[0];
port = args[1];
user = args[2];
pass = args[3];
} catch (Exception e) {
Usage.usage();
}
omero.client client = new omero.client(args);
try {
ServiceFactoryPrx factory = client.createSession(user, pass);
List<Project> projects = AllProjects.getProjects(factory.getQueryService(), user);
PrintProjects.print(projects);
} finally {
client.closeSession();
}
}
}
Example: examples/TreeList/Main.java
If you are familiar with the admin user concept in OMERO, you might wonder if it is possible for administrative users to perform tasks for regular users. Under Unix-based systems this is commonly known as “sudo” functionality. Although not (yet) as straightforward, it is possible to create sessions for other users and carry out actions on their behalf.
#include <iostream>
#include <omero/api/IAdmin.h>
#include <omero/api/ISession.h>
#include <omero/client.h>
#include <omero/model/Session.h>
int main(int argc, char* argv[]) {
Ice::StringSeq args1 = Ice::argsToStringSeq(argc, argv);
Ice::StringSeq args2(args1); // Copies
// ticket:1246
Ice::InitializationData id1;
id1.properties = Ice::createProperties(args1);
Ice::InitializationData id2;
id2.properties = Ice::createProperties(args2);
omero::client_ptr client = new omero::client(id1);
omero::client_ptr sudoClient = new omero::client(id2);
omero::api::ServiceFactoryPrx sf = client->createSession();
omero::api::ISessionPrx sessionSvc = sf->getSessionService();
omero::sys::PrincipalPtr p = new omero::sys::Principal();
p->name = "root"; // Can change to any user
p->group = "user";
p->eventType = "User";
omero::model::SessionPtr sudoSession = sessionSvc->createSessionWithTimeout( p, 3*60*1000L ); // 3 minutes to live
omero::api::ServiceFactoryPrx sudoSf = sudoClient->joinSession( sudoSession->getUuid()->getValue() );
omero::api::IAdminPrx sudoAdminSvc = sudoSf->getAdminService();
std::cout << sudoAdminSvc->getEventContext()->userName;
}
Example: examples/OmeroClients/sudo.cpp
client = omero.client();
sudoClient = omero.client();
try
sf = client.createSession('root','ome');
sessionSvc = sf.getSessionService();
p = omero.sys.Principal();
p.name = 'root'; % Can change to any user
p.group = 'user';
p.eventType = 'User';
sudoSession = sessionSvc.createSessionWithTimeout( p, 3*60*1000 ); % 3 minutes to live
sudoSf = sudoClient.joinSession( sudoSession.getUuid().getValue() );
sudoAdminSvc = sudoSf.getAdminService();
disp(sudoAdmin.Svc.getEventContext().userName);
catch ME
sudoClient.closeSession();
client.closeSession();
end
Example: examples/OmeroClients/sudo.m
import sys
import omero
args = list(sys.argv)
client = omero.client(args)
sudoClient = omero.client(args)
try:
sf = client.createSession("root", "ome")
sessionSvc = sf.getSessionService()
p = omero.sys.Principal()
p.name = "root" # Can change to any user
p.group = "user"
p.eventType = "User"
sudoSession = sessionSvc.createSessionWithTimeout( p, 3*60*1000L ) # 3 minutes to live
sudoSf = sudoClient.joinSession( sudoSession.getUuid().getValue() )
sudoAdminSvc = sudoSf.getAdminService()
print sudoAdminSvc.getEventContext().userName
finally:
sudoClient.closeSession()
client.closeSession()
Example: examples/OmeroClients/sudo.py
import java.util.List;
import omero.api.IAdminPrx;
import omero.api.ISessionPrx;
import omero.api.ServiceFactoryPrx;
import omero.model.Session;
import omero.sys.Principal;
public class sudo {
public static void main(String args[]) throws Exception {
omero.client client = new omero.client(args);
omero.client sudoClient = new omero.client(args);
try {
ServiceFactoryPrx sf = client.createSession("root", "ome");
ISessionPrx sessionSvc = sf.getSessionService();
Principal p = new Principal();
p.name = "root"; // Can change to any user
p.group = "user";
p.eventType = "User";
Session sudoSession = sessionSvc.createSessionWithTimeout( p, 3*60*1000L ); // 3 minutes to live
ServiceFactoryPrx sudoSf = sudoClient.joinSession( sudoSession.getUuid().getValue() );
IAdminPrx sudoAdminSvc = sudoSf.getAdminService();
System.out.println( sudoAdminSvc.getEventContext().userName );
} finally {
sudoClient.closeSession();
client.closeSession();
}
}
}
Example: examples/OmeroClients/sudo.java
Like the complete examples above, there are several topics which need to be covered in more detail:
Obviously, this introduction is still not exhaustive by any means. Some topics which we would like to see added here in the near future include:
Although not directly relevant to writing a client, it is important to note that much of the code for OMERO Python language bindings, OMERO C++ language bindings, and OMERO Java language bindings is code generated by the BlitzBuild. Therefore, many of the imported and included files in the examples above cannot be found in github.
We plan to include packages of the generated source code in future releases. Until then, it is possible to find our latest builds on jenkins or to build them locally, although some of the generated files are later overwritten by hand-written versions:
Separate method calls will often return one and the same object, say Dataset#123. Your application, however, will not necessarily recognize them as the same entity unless you explicitly check the id value. A client-side caching mechanism would allow duplicate objects to be handled transparently, and would eventually facilitate lazy loading.
Several types are harder to use than they need be. omero.sys.Parameters, for example, is a class for which native implementations are quite helpful. We have provided omero.sys.ParametersI in all supported languages, and will most likely support more over time: